160 research outputs found

    Mechanism of saline deposition and surface flashover on high-voltage insulators near shoreline:mathematical models and experimental validations

    Get PDF
    This paper deals with sea salt transportation and deposition mechanisms and discusses the serious issue of degradation of outdoor insulators resulting from various environmental stresses and severe saline contaminant accumulation near the shoreline. The deterioration rate of outdoor insulators near the shoreline depends on the concentration of saline in the atmosphere, the influence of wind speed on the production of saline water droplets, moisture diffusion and saline penetration on the insulator surface. This paper consists of three parts: first a model of saline transportation and deposition, as well as saline penetration and moisture diffusion on outdoor insulators, is presented; second, dry-band initiation and formation modelling and characterization under various types of contamination distribution are proposed; finally, modelling of dry-band arcing validated by experimental investigation was carried out. The tests were performed on a rectangular surface of silicone rubber specimens (12 cm × 4 cm × 8 cm). The visualization of the dry-band formation and arcing was performed by an infrared camera. The experimental results show that the surface strength and arc length mainly depend upon the leakage distance and contamination distribution. Therefore, the model can be used to investigate insulator flashover near coastal areas and for mitigating saline flashover incidents.</p

    Design and implementation of hybrid vehicle using control of DC electric motor

    Get PDF
    The electric motors and its control technology are key components of hybrid electric vehicles (HEVs). Control of the electric motor is a fundamental issue for traction application in electric vehicles and HEVs. This paper presents the design, development and implementation of a hybrid vehicle using both an electric motor and petrol engine to increase efficiency and decrease carbon footprint. Initially, a prototype of a HEV is designed and the performance values are calculated, before a control system is developed and implemented to control the DC motor speed using a microcontroller as the vehicle’s electronic control unit along with simple proportional integral derivative (PID) control using speed as a feedback mechanism. The prototype made incorporated voltage, current, speed and torque sensors for feedback resulting in a closed loop control system which successfully matched the speed input of a user-controlled pedal sensor. A user interface was developed to show the driver of the vehicle key variables such as the revolutions per minute (RPM) of the motor, the speed of the vehicle along with the current being drawn, and the voltage applied to the motor with overall power. To output a variable voltage from the Arduino, a digital output was used with pulse width modulation (PWM) capabilities in order to provide a variable DC voltage to the speed controller

    Synchronization of N-Non-Linear Slave Systems with Master System Using Non-Adaptive and Adaptive Coupled Observers

    Get PDF
    Synchronization of N-slave chaotic systems with a master system is a challenging task, particularly in recent times. In this paper, a novel methodology is proposed for synchronizing the N number of slave systems with a master system. The proposed methodology is based on coupled adaptive synchronous observers. The difference between the corresponding states of master and slave systems is converged to the origin by means of a novel feedback control scheme to achieve synchronization between the master and slave systems. The efficacy of the proposed methodology is verified through a simulation of FitzHugh–Nagumo non-linear systems in MATLAB. The simulation results validate and prove claims, and these systems are successfully synchronized by CCS and CCAS observer-based control

    Load Frequency Control (LFC) Strategies in Renewable Energy‐Based Hybrid Power Systems:A Review

    Get PDF
    The hybrid power system is a combination of renewable energy power plants and conventional energy power plants. This integration causes power quality issues including poor settling times and higher transient contents. The main issue of such interconnection is the frequency variations caused in the hybrid power system. Load Frequency Controller (LFC) design ensures the reliable and efficient operation of the power system. The main function of LFC is to maintain the system frequency within safe limits, hence keeping power at a specific range. An LFC should be supported with modern and intelligent control structures for providing the adequate power to the system. This paper presents a comprehensive review of several LFC structures in a diverse configuration of a power system. First of all, an overview of a renewable energy-based power system is provided with a need for the development of LFC. The basic operation was studied in single-area, multi-area and multi-stage power system configurations. Types of controllers developed on different techniques studied with an overview of different control techniques were utilized. The comparative analysis of various controllers and strategies was performed graphically. The future scope of work provided lists the potential areas for conducting further research. Finally, the paper concludes by emphasizing the need for better LFC design in complex power system environments

    Prevalence of Nemathelminthes in Cart Pulling Camels

    Get PDF
    Background: Camels are multipurpose animals, raised for the source of animal protein and transportation. Pakistan is also a major camel raising country and its population is one million. Parasitic disease cause impaired camel production, although the camels are less affected by the parasites, but some helminths affect them.Methods: The present study aimed to determine camels’ gastrointestinal helminths (nemathelminthes) in Sakrand, Sindh. The study was carried out in a total 100 dromedaries. The samples were collected and processed through the direct smear and floatation techniques.Results: The overall data showed a high infestation of nemathelminthes (62%) with the presence of following parasites; Trichostrongylus, Moniezia, Ostertagia, Haemonchus, Marshallagia, Trichuris, Toxocara, Ascaria, Escaria.Conclusion: To conclude nemathelminthes are major problem in camels under traditional husbandry. Regarding the high prevalence of infection use of parasitic control programmes are essential to improve camel health and productivity because camels play an important role in human lives by helping in transportation, work and provide production

    Political Stability and its Impact on Economic Growth of Pakistan (1988-2018): A Time Series Analysis

    Get PDF
    This research paper empirically investigates the outcome of Political stability on economic growth (EG) of Pakistan for the period of 1988 to 2018. Political stability (PS), gross fixed capital formation (GFCF), total labor force (TLF) and Inflation (INF) are important explanatory variables. Whereas for model selection GDPr is used as the dependent variable. To check the stationary of time series data Augmented Dickey Fuller (ADF) unit root (UR) test has been used,&nbsp; and whereas to find out the long run relationship among variables, OLS method has been used. The analysis the impact of PS on EG (EG) in the short run, VAR model has been used. The outcomes show that all the variables (PS, GFCF, TLF and INF) have a significantly positive effect on the EG of Pakistan in the long run period. But the effect of PS on GDP is smaller. Further, in this research we are trying to see the short run relationship between GDP and other explanatory variables. The outcomes show that PS does not have such effect on GDP in the short run analysis. While GFCF, TLF and INF have significantly positive effect on GDP of Pakistan in the short run period

    Robust Visual Tracking Using Illumination Invariant Features in Adaptive Scale Model

    Get PDF
    When entering into the realm of Computer Vision, the first thing which comes in to mind is Visual tracking. Visual tracking by far comes into one of the most actively investigated research areas because of the fact that it has an extensive collection of applications in areas such as activity recognition, surveillance, motion analysis and as well as human computer interaction. Some serious challenges of this area which still create hindrance in achieving 100% accuracy are abrupt appearance and pose changes of an object along with its background blockage due to blockages called occlusion, illumination and lighting variances and changes in scale of target object in the frames. Moreover, diverse algorithms had been proposed for the resolution of said issue. Now in such cases, if we study the statistical analysis of correlation between two frames in a certain video, it can be efficiently utilized to get the most exact location of the targeted object. The algorithms in existence today do not completely exploit a strong spatio-temporal relationship that very often occurs between the two successive frames in a video sequence. Recent advances in correlation-based tracking systems have been proposed to address the problem in successive frames. In this thesis a very simple yet quite speedy and robust algorithm that in actual brings all the relevant information used for Visual Tracking. Two of the Models proposed are the “Locality Sensitive Histogram” and “Discriminative Scale Tracking Method”. These are robust enough to the variations which are based on appearance which are normally presented by blockage, pose, illumination and lighting variations alike. A scheme is proposed called scale adaptation which is very much clever to adapt variations of targeted scale in the most efficient manner. The Discriminative Scale Tracking Method is used for detection as well as scale change ultimately resulting in an effective tracking method in the end. Various different experiments with the best algorithms have demonstrated on challenging sequences that the suggested methodology attains promising results as far as robustness, accuracy, and speed is concerned

    Stability Analysis and Design of Variable Step-Size P Algorithm Based on Fuzzy Robust Tracking of MPPT for Standalone/Grid Connected Power System

    Get PDF
    This research aims to design a modified P&O algorithm for the efficient tracking of maximum power point (MPPT) for standalone and grid-connected systems. The proposed research work modifies the P&O algorithm for the dc-dc converter where the fixed step size P&O algorithm is translated into variable step size with the help of ant colony optimization (ACO) to generate optimal parameters for the PID controller to generate a variable step size in the P&O algorithm. This variable step size is dependent upon the error that is the difference between the generated power and desired power. By doing this it improves the efficiency of the P&O algorithm and its limitations are overcome. Furthermore, the PV is extended to connect with a grid where the inverter is controlled by a fuzzy logic controller (FLC) so that the combined structure of variable P&O and fuzzy helps to achieve MPP efficiently. The robustness of the proposed work is compared with other state-of-the-art controllers to justify the effectiveness of the proposed work. Finally, a stability test of the system is carried out to verify the overall stability of the power system
    corecore